
General and Practical Property-based Testing for Android Apps
Yiheng Xiong

Shanghai Key Laboratory of
Trustworthy Computing, East China

Normal University
China

xyh@stu.ecnu.edu.cn

Ting Su
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
tsu@sei.ecnu.edu.cn

Jue Wang
State Key Lab for Novel Software

Tech. and Dept. of Computer Sci. and
Tech., Nanjing University

China
juewang591@gmail.com

Jingling Sun
University of Electronic Science and

Technology of China
China

jingling.sun910@gmail.com

Geguang Pu
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University. China
ggpu@sei.ecnu.edu.cn

Zhendong Su
ETH Zurich
Switzerland

zhendong.su@inf.ethz.ch

ABSTRACT

Finding non-crashing functional bugs for Android apps is challeng-
ing for both manual testing and automated GUI testing techniques.
This paper introduces and designs a general and practical testing
technique based on the idea of property-based testing for finding
such bugs. Specifically, our technique incorporates (1) a property de-
scription language (PDL) to allow specifying desired app properties,
and (2) two exploration strategies as the input generators for effec-
tively validating the properties. We implemented our technique as
a tool named Kea and evaluated it on 124 historical bugs from eight
real-world, popular Android apps. Our evaluation shows that our
PDL can specify all the app properties violated by these historical
bugs, demonstrating its generability for finding functional bugs.
Kea successfully found 66 (68.0%) and 92 (94.8%) of the 97 historical
bugs in scope under the two exploration strategies, demonstrating
its practicability. Moreover, Kea found 25 new functional bugs on
the latest versions of these eight apps, given the specified proper-
ties. To date, all these bugs have been confirmed, and 21 have been
fixed. In comparison, prior state-of-the-art techniques found only
13 (13.4%) historical bugs and 1 new bug. We have made all the
artifacts publicly available at https://github.com/ecnusse/Kea.

CCS CONCEPTS

• Software and its engineering→ Software testing and debugging.

KEYWORDS

Property-based testing, Android app testing, Non-crashing func-
tional bugs

ACM Reference Format:

Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong
Su. 2024. General and Practical Property-based Testing for Android Apps. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3694986

39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3691620.3694986

1 INTRODUCTION

Mobile apps are ubiquitous and playing an important role in serving
people’s daily life [41]. However, it is reported that 88% of the users
would abandon an app if they encounter bugs or glitches [5]. The
app quality and reliability are therefore important for the competi-
tive edge. Specifically, a recent comprehensive study [45] reveals
that non-crashing functional bugs (functional bugs for short) ac-
count for the majority (about 65.4%) of the bugs in the apps. Indeed,
some functional bugs may even lead to severe consequences in real
life [26, 29, 33]. Thus, effectively validating the functional correct-
ness of the apps is crucial for their success.
Challenges. Manual testing (e.g., manually writing GUI tests or
interacting with the apps) is the most widely-used practice to vali-
date the functional correctness [16, 20]. In this process, the testers
compare expected app behaviors (e.g., encoded in the assertions
of GUI tests) with the actual app behaviors to find inconsistencies
(i.e., functional bugs). However, manual testing is usually expensive,
small-scale, and inadequate — exercising only the happy paths of
app functionalities, thus likely missing non-trivial functional bugs.
Despite automated GUI testing techniques [8, 24, 34, 35, 44] can
automatically explore the apps and thus reduce manual testing cost,
they cannot find functional bugs due to the lack of test oracles [3].

To automatically find functional bugs, some novel techniques
like Genie [36] and Odin [43] propose automated oracles. For
example, Genie proposes the independent view property, one likely-
hold metamorphic relation [6, 7, 32] in the apps, as the automated
oracle. Odin uses differential analysis to automatically mine the
abnormal app behaviors from a large number of GUI traces based
on the classical oracle of “bugs as deviant behaviors” [10]. However,
these techniques are limited in generability and practicality. First,
the oracles of Genie and Odin can only capture limited portions
of functional bugs. For example, only 29.5% of the functional bugs
fall into the scope of Genie’s oracle (cf. Section 1 in [36]). Second,
both Genie and Odin suffer from the high false positive rates of
59% and 68%, respectively (cf. Section 5.4 in [36] and Section 5.5

https://github.com/ecnusse/Kea
https://doi.org/10.1145/3691620.3694986
https://doi.org/10.1145/3691620.3694986

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong Su

Sort

[3, 1, -1] [1, 3, 2] ... [...]

(a) Property-based testing for
function sort

(b) Property-based testing
for Android apps

[-1, 1, 3] [1, 2, 3] ... [...]

App

 ...

...
event
trace 1

event
trace 2

event
trace n

Figure 1: Conceptual comparison between property-based

testing for traditional program and Android apps.

in [43]) because the proposed oracles are heuristic. It incurs a lot of
manual overhead of filtering false positives.

The preceding situation underlines the challenges of validating
the functional correctness of the apps. On the one hand, manual
testing comeswith the human knowledge of expected app behaviors
(i.e., the oracles) but is limited by the high cost and inadequacy of
manually creating GUI tests. On the other hand, automated GUI
testing techniques excel at automatically exploring the apps but
are struggling with the availability and effectiveness of the oracles.
High-level idea. To tackle the preceding challenges, this paper
introduces and designs a general and practical testing technique
based on the idea of property-based testing (PBT) [9, 11]. Our key
insight behind this technique is to synergistically combine (1) the
strengths of the human knowledge of expected app behaviors and
(2) the abilities of automated GUI testing to explore the apps.

Specifically, classic property-based testing validates whether a
piece of program satisfies some desired properties by automatically
generating a large number of random inputs. Note that the prop-
erties for PBT are typically manually specified [12]. For example,
in Figure 1(a), for a function sort which takes as input an integer
array arr and returns the sorted arr with its elements in the as-
cending order, one of its desired property is arr[𝑖] ≤ arr[𝑗] (∀𝑖, 𝑗 ,
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝐿−1, 𝐿 is the array length of arr). PBT would generate
a number of arrays with different sizes and elements (e.g., [3, 1, -1],
[1, 3, 2]) to validate whether the property holds.

At the high-level, the idea of our testing technique is similar
(shown in Figure 1(b)): we aim to validate whether an app satisfies
the desired property by automatically generating a large number
of random event traces. These event traces drive the app to output
different app states (like GUI pages). Based on these states, we can
check whether the desired property holds. However, instantiating
the preceding idea in the settings of GUI applications as Android
apps is not straightforward. We face two technical challenges: (1)
how to specify the desired app properties covering general func-
tional bugs, and (2) how to effectively explore the app (i.e., generat-
ing GUI tests) to validate the properties. Despite some work like
PBFDroid [37] explores property-based testing in this setting, they
are limited to specific bug types (discussed in Sections 5.5 and 7).
Our approach. To facilitate specifying app properties, we design a
property description language (PDL) in a flexible and general man-
ner. Specifically, in this PDL, a property is represented in the form
of precondition, interaction scenario, and postcondition, which can
cover general app functionalities (detailed in Section 3.2). To effec-
tively explore the app for validating the property, we design two
UI exploration strategies (detailed in Section 3.3): (1) random explo-
ration and (2) main path guided exploration strategies. Specifically,

the random exploration strategy randomly explores the app in a
wide exploration space. On the other hand, the main path guided
exploration strategy is inspired by the typical process of manual
testing — a tester usually follows a main path (typically the happy
path) from the app entry to reach the target app functionality for
functional testing. Our key insight is that such a main path can
be easily obtained as a by-product when a user specifies an app
property, and thus can effectively guide the exploration of alterna-
tive paths along the main path to validate functional correctness.
Moreover, when multiple properties of an app are available, the
two exploration strategies can validate multiple properties together.
It improves the testing efficiency. Meanwhile, the interaction sce-
narios of these properties provide a partial model of the app, thus
enabling these two strategies to explore more diverse and deeper
app states (detailed in Section 3.3.3).
Evaluation and results.We implemented our testing technique
as a tool named Kea. To evaluate Kea, we collected all the histori-
cal functional bugs from eight popular Android apps without any
cherry picking. We obtained 124 historical functional bugs which
are reproducible at the time of our study. Our evaluation shows
that all the 124 desired app properties violated by these historical
bugs can be successfully specified by our PDL. It indicates that Kea
is general for finding functional bugs. On the other hand, on the 97
historical bugs in scope1, Kea successfully found 66 bugs (68.0%)
and 92 bugs (94.8%) under the random and main path guided ex-
ploration strategies, respectively. Moreover, the main path guided
strategy is more efficient than the random one — the former is
nearly 4X faster than the latter in terms of the average time of
finding functional bugs.

Further, we applied Kea to validate all these properties on the
latest versions of these apps on which those historical functional
bugs have already been fixed. Despite these fixes, Kea still found 25
new functional bugs, all of which have been confirmed, and 21 have
already been fixed by app developers. The result shows that Kea
can validate functional correctness more thoroughly. In comparison,
prior state-of-the-art techniques can find only 13 historical bugs
and 1 new bug. These results show that the practicability of Kea.

In summary, this paper has the following contributions:

• At the conceptual level, we introduce a general and practical
property-based testing technique for validating the functional
correctness of Android apps.

• At the design level, we design (1) a property description language
to allow specifying app properties and (2) the two exploration
strategies to effectively validate app properties.

• At the technical level, we have instantiated our design and idea
as a property-based testing tool Kea for Android apps.

• At the empirical level, we have demonstrated the generability and
practicality of Kea based on a dataset of 124 historical functional
bugs. Kea further successfully found 25 new functional bugs. We
have made all the artifacts publicly available at https://github.
com/ecnusse/Kea for replication and facilitating further research.

1We excluded 27 historical bugs because the bug-triggering conditions are too specific
and are not the focus of our work. We give more details in RQ2’s setup in Section 5.1.

https://github.com/ecnusse/Kea
https://github.com/ecnusse/Kea

General and Practical Property-based Testing for Android Apps ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1 @precondition(
2 findWidget(id="tag_button").exists() and
3 findWidget(id="content",textContains="#").exists()
4)
5 @property
6 def tag_removement():
7 # get the text from the note's content
8 original_content = findWidget(id="content").get("text")
9 # click to open the tag list
10 findWidget(id="tag_button").click()
11 # get the tags in current note
12 checked_tag = []
13 for tag in findWidget(id="tag_name"):
14 # only checked tag is in current note
15 if tag.get("checked") == true:
16 checked_tag.append(tag)
17 # random select a tag
18 selected_tag = random.choice(checked_tag)
19 # get the name of the tag
20 selected_tag_name = '#' + selected_tag.get("text")
21 # click to uncheck the selected tag
22 selected_tag.click()
23 findWidget(text="OK").click()
24 # get the updated content after removing the tag
25 updated_content = findWidget(id="content").get("text")
26 # get the expected content after removing the tag
27 expected_content = origin_content.replace(selected_tag_name, "")
28 # the tag should be removed in the content and the updated content should be the
29 # same as expected content
30 assert not findWidget(id="content", textContains=selected_tag_name).exists() and
31 updated_content == expected_content
 (a) Overview of Kea (b) Example property of the functionality removing note tags in OmniNotes

App

Random
exploration

Input generator
Main path guided

exploration

Bug reports

...

Generate input Check property

Figure 2: Overview of Kea

2 OVERVIEW AND EXAMPLE

Overview. Figure 2(a) shows the overview of our property-based
testing technique and the implemented tool Kea. Given an app and
one property of interest (specified by a human tester), Kea auto-
matically explores the app to validate the property. If the property
is violated, Kea will output a bug report, which contains some GUI
tests illustrating the violation. Specifically, to support the applica-
tion of property-based testing, Kea provides (1) a Python-based
property description language to help users specify the desired app
properties, and (2) two exploration strategies to generate a large
number of GUI tests for validating the properties. Note that an
app property characterizes the expected behaviors of specific app
functionality. In the following, we use an example to illustrate this
testing technique.
Example. Figure 3 shows OmniNotes, a popular note-taking app
with 2.7k stars on GitHub. Figure 3(a) shows one major app feature:
a user can create a note, add a note tag, and remove the tag. Specifi-
cally, a user can create a note by clicking the floating action button
on page (1) to create an (empty) note (page (2)), and add some texts
with a note tag (“read a book #Tag1” in this case, page (3)). Note
that OmniNotes explicitly stores the tag in the note content (“#Tag1”
in this case). To remove the note tag, a user can click the note-tag
button on the top-right of page (3) to open the tag list (page (4)),
uncheck the tag “Tag1” in the tag list, and click "OK" on page (5).
On page (6), we can see that the functionality of removing the note
tag works: after unchecking the note tag “Tag1” in the tag list, the
text “#Tag1” is correctly removed from the main text of the note.

Since removing note tags is a basic functionality ofOmniNotes, we
are interested in validating its correctness by specifying the desired
property in Figure 2(b). The property defines the precondition (when
we could remove the tag, lines 1-4), the interaction scenario (how we
could remove the tag, lines 8-27), and the postcondition (what are
the expected results after removing the tag, lines 30-31). Specifically,

the postcondition is defined by an assert statement which checks
whether the tag is removed from the note content and the note
content (excluding the removed tags) remains unchanged.

When we applied Kea to validate this property, a new functional
bug was quickly found. Figure 3(b) shows one of bug-triggering
event traces. If an app user creates a note (pages (1)∼(2)), adds
some texts (e.g., “read a book”) with one tag (“Tag1”) to the note
content (pages (2)∼(3)), returns back to the note list and reopens
the current note (pages (3)∼(4)’), adds the second tag (“Tag2”) to
the note content (pages (4)’∼(5)’), clicks the second tag ("Tag2")
on page (5)’, and removes the tag “Tag1” (pages (6)’∼(8)’). We can
see that the tag "Tag1" is successfully removed, but the tag “Tag2”
is erroneously changed to “Ta g2” (page (9)’), which violates the
postcondition. Even worse, if we open the tag list on page (9)’, the
original tag “Tag2” in the tag list becomes “Ta”. Note that the prior
tools like Genie and Odin cannot find this bug because of their
limited automated oracles. PBFDroid can check the property of
data manipulation functionalities (like the functionality of removing
note tags in this case), but it still cannot find this bug. Because its
property only checks whether the note’s tag (“Tag1”) is removed.

3 DESIGN OF KEA

3.1 Preliminary

Android apps are GUI-centered and event-driven.When an Android
app A runs on the device, its state 𝑠 can be abstractly represented
by its runtime GUI layout ℓ (𝑠 is thus named as a GUI state). A GUI
layout ℓ is a tree, in which each node is a GUI widget 𝑤 (e.g., a
button or a textview). A user usually interacts with the app by
sending events to a GUI widget. An event 𝑒 = ⟨𝑡,𝑤, 𝑑⟩, where 𝑒.𝑡
denotes the event’s type (e.g., "click", "long click"), 𝑒.𝑤 denotes the
receiver widget, and 𝑒.𝑑 denotes the associate data (e.g., the texts
needed in the EditText widget). In addition, a user can also send
non-GUI events to A, such as rotating the screen.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong Su

Notes

+

Note Editor Note Editor

read a book #Tag1

Note Editor

read a book

Note Editor

read a book #Tag1

Select tag

 Tag1

ok

Note Editor

read a book #Tag1

Select tag

 Tag1

ok

(a) The event trace of the functionality removing note tags
in OmniNotes

(b) The bug-triggering event trace of a new bug found by our tool

(1) (2) (3) (4) (5) (6)

Note Editor

read a book #Ta g2

Note Editor

read a book #Tag1 #Tag2

Note Editor

read a book #Tag1 #Tag2

(5)’ (6)’ (7)’ (8)’ (9)’

Note Editor

read a book #Tag1

Select tag

 Tag1
 Tag2

ok

Note Editor

read a book #Tag1

Select tag

 Tag1
 Tag2

ok

Note Editor

read a book #Tag1

(4)’

Figure 3: OmniNotes: (a) shows the functionality of removing note tags, (b) shows a new bug found by Kea.

𝜙 F @precondition(Pred)
@property
def prop():

Stmts

Stmts F Stmt Stmts | 𝜖
Stmt F widget.event

| assert Pred /* A postcondition */
| var = widget | var = attr
| if Pred: Stmts else: Stmts | ... /* All conditional constructs */
| For var in var: Stmts | ... /* All loop constructs */
| strval.replace(var, strval) | ... /* All function callings */
| var = var + var | ... /* All arithmetic statements */
| ... /* All other statements supported by Python*/

Pred F Clause | not Pred | Pred and Pred | Pred or Pred
Clause F widget.exists()

| attr relop numval | attr eqop numval
| attr eqop strval | attr eqop boolval
| var relop numval | var eqop numval
| var eqop strval | var eqop boolval

widget F findWidget(crit)
/* An API returning a widget of the current GUI layout
that matches certain criteria */

crit F attr_id=value,crit | 𝜖
attr F widget.get("attr_id")
attr_id F id | className | description | text | ...

/* An attribute of a widget */
event F click() | long_click() | set_text(strval) | scroll().to(crit)

| rotate_screen() | ...
/* An API sending a specified event to the app */

var F original_content | checked_tag | ... /*A Python variable*/
relop F > | < | ≤ | ≥
eqop F = | ≠
value F strval | numval | boolval
strval F "OK" | "tag_name" | ... /*A concrete string value*/
numval F 0 | 1 | 0.1 | ... *A concrete numeric value*/
boolval F True | False

Figure 4: Core syntax of our PDL

Based on the definitions of state abstraction and event, we can
define an execution trace 𝜏 = ExecuteA (𝐸), given a sequence of
events 𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛]. Executing A with a sequence of events
𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛] yields an execution trace 𝜏 . 𝜏 can be denoted as
𝜏 = 𝑠0

𝑒1−−→ 𝑠1
𝑒2−−→ . . .

𝑒𝑛−−→ 𝑠𝑛 or 𝜏 = 𝑠0
E
⇝ 𝑠𝑛 . Without ambiguity, we

also denote 𝜏 as a sequence of GUI states [𝑠0, 𝑠1, . . . , 𝑠𝑛], where 𝑠0
is the state of A before sending 𝑒1, and 𝜏 = [𝑠0] if 𝐸 = [].

3.2 Specifying Properties

3.2.1 High-level property definition. To achieve property-based
testing, we need to specify the desired property of an app func-
tionality. We observe that in manual testing, to exercise an app
functionality, a user needs to (1) navigate to a starting GUI state 𝑠
where the functionality is ready for execution, (2) interact with the
app to perform the functionality by executing a sequence of events
𝐸, and (3) observe whether the ending GUI state 𝑠′ is expected.

To this end, we design the property 𝜙 in the form of 𝜙 = ⟨𝑃, 𝐼,𝑄⟩,
where (1) 𝑃 is a preconditionwhich defines when or where we could
perform the app functionality, (2) 𝐼 is an interaction scenario which
defines how to perform the functionality, and (3)𝑄 is a postcondition
which defines what are the expected results after the functionality.

3.2.2 Property Description Language. To facilitate specifying gen-
eral properties in the form of 𝜙 = ⟨𝑃, 𝐼,𝑄⟩, we design a property
description language (PDL). It is a domain specific language based
on Python. Figure 4 shows the core syntax of our PDL, which is a
superset of the syntax of Python. In our PDL, the interaction sce-
nario 𝐼 and the postcondition 𝑄 are specified in a Python function
annotated with @property. The precondition 𝑃 is specified in the
function’s annotation @precondtion. We give relevant definitions
below and illustrate our PDL with the property in Figure 2(b).
Precondition and Postcondition. The precondition 𝑃 and the
postcondition 𝑄 are defined as the predicates over the starting and
ending GUI states 𝑠 and 𝑠′, respectively. A predicate 𝑝 over GUI
states is a function 𝑝 : 𝑆 → {⊤,⊥}. We denote 𝑠 |= 𝑝 if an app’s
GUI state 𝑠 satisfies the predicate 𝑝 , i.e., 𝑝 (𝑠) = ⊤.

In our language, the precondition is specified in the annotation
@precondtion, while the postcondition is specified in an assert
statement. In Figure 4, the rule of 𝑃𝑟𝑒𝑑 shows that a predicate could
be a first-order clause 𝐶𝑙𝑎𝑢𝑠𝑒 or a number of clauses connected
by logical operators (and, or, and not). A clause 𝐶𝑙𝑎𝑢𝑠𝑒 can check
whether a specific widget exists on the current GUI layout or the
value of a widget’s specific attribute (e.g., id, text). To support
more general predicates, our language provides an API named as
𝑤𝑖𝑑𝑔𝑒𝑡 to obtain a widget (from the current GUI layout) which
matches some criterion 𝑐𝑟𝑖𝑡 . The 𝑐𝑟𝑖𝑡 specifies the expected values
of some attribute 𝑎𝑡𝑡𝑟_𝑖𝑑 (e.g., id or text) of the obtained widget.
For instance, in Figure 2(b), the precondition checks whether a

General and Practical Property-based Testing for Android Apps ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Algorithm 1: Random Exploration
1 Function main(𝜙 = ⟨𝑃, 𝐼,𝑄 ⟩):
2 while not timeout do
3 cleanApp ();
4 restartApp ();
5 for 𝑖 ← 0 to MAX_EVENT_NUMBER do

6 𝑠 ← getCurrentState() ;
7 if 𝑠 |= 𝑃 ∧ random() < 0.5 then
8 checkProperty(𝐼 ,𝑄) ;

9 else

10 𝑒 ← generateRandomEvent(𝑠) ;
11 sendEventToApp (𝑒);

widget whose id is tag_button exists (Line 2), and whether a
tag exists in the note’s content whose id is content (Line 3); the
postcondition (Lines 30-31) checks whether the removed tag still
exists in the note content and the updated content is expected.
Interaction Scenario. The interaction scenario 𝐼 defines how to
interact with the app to perform the target functionality. We denote
the execution trace of 𝐼 as 𝑠0

I
⇝ 𝑠𝑛 , where 𝑠0 and 𝑠𝑛 are the starting

and ending GUI states, respectively.
Following the syntax of Python, our PDL allows the users to

define a sequence of statements as the interaction scenario. In
Figure 4, the rule of 𝑒𝑣𝑒𝑛𝑡 shows that our PDL supports generating
and sending various events such as click(), long_click(), and
rotate_screen(). Since our PDL is a superset of Python, the user
can utilize all features in Python, e.g., conditional statements, loops,
and function calls, to facilitate specifying the interaction scenarios
with complicated logic. For example, in Figure 2(b), the interaction
scenario includes such an event sequence 𝐸: (1) open the tag list
(Line 10), (2) uncheck a selected tag (Line 22) and (3) click "OK" to
remove the tag (Line 23). Specifically, our PDL allows to find which
tags are checked in the current note via a loop (Lines 13-16).
Additional features of our language. As the rule of 𝑆𝑡𝑚𝑡𝑠 and
𝑆𝑡𝑚𝑡 in Figure 4 shows, our PDL allows users to specify multiple
assert statements in the function body. Assume a GUI state 𝑠0
satisfies the precondition of a property 𝜙 = ⟨𝑃, 𝐼,𝑄⟩ and the inter-
action scenario 𝐼 yields a sequence of GUI states [𝑠0, 𝑠1, 𝑠2, 𝑠3]. Our
PDL allows users to place the assert statements following any GUI
state (say 𝑠1) to define the postcondition𝑄 . In other words,𝑄 is not
limited to be placed after the ending state 𝑠3. Moreover, we can use
conditional statements, loops, and function calls to specify more
complicated postconditions. The users can also specify multiple
properties in the function body.
Property-based Testing for Android Apps A property 𝜙 =

⟨𝑃, 𝐼,𝑄⟩ is a tuple where the precondition 𝑃 and postcondition 𝑄

are both predicates over GUI states and 𝐼 is an interaction scenario.
An app’s GUI state 𝑠 satisfies 𝜙 , denoted by 𝑠 |= 𝜙 , iff

(𝑠 |= 𝑃 ∧ 𝑠 I
⇝ 𝑠′) ⇒ 𝑠′ |= 𝑄.

An app A satisfies the property, denoted by A |= 𝜙 , iff for every
GUI state 𝑠 ∈ 𝑆 of A, 𝑠 |= 𝜙 . If we find some GUI state 𝑠 ̸ |= 𝜙 , we
find a functional bug.

App
Entry

s1s0 s2 s3 s4
e1 e2 e3 e4

e6

e7

e3
s5 s6s7 s8 e5

I

s9
I

Figure 5: Example for main path guided exploration strategy

3.3 Validating Properties

Given a specified property 𝜙 = ⟨𝑃, 𝐼,𝑄⟩, our tool automatically ex-
plores the app’s GUI state space for property validation. Specifically,
We design two UI exploration strategies: (1) random exploration, and
(2) main path guided exploration. The random exploration strategy
aims to generate random events to explore the GUI state space in a
wide range and check the property if the precondition is satisfied.
On the other hand, we observe that when a user specifies an app
property, the user would follow a main path (typically the happy
path) from the app entry to reach the target app functionality. Such
a main path can be easily obtained as a by-product and leveraged to
guide the exploration. Accordingly, we design a guided exploration
strategy that utilizes such main paths.

3.3.1 Random Exploration. Algorithm 1 presents the random ex-
ploration strategy. The algorithm takes the property 𝜙 = ⟨𝑃, 𝐼,𝑄⟩
as input and iterates for multiple rounds trying to reach GUI states
where the property can be checked until the time budget runs out
(Lines 2–11). At each round, it restarts the app to reach an initial
GUI state (Lines 3–4), and generates random events to explore the
GUI state space (Lines 10–11). At each GUI state, it checks whether
the precondition 𝑃 is satisfied (Line 7). If so, it checks the property
at the current GUI state 𝑠 with 50% probability. If 𝑠 needs to be
checked, the interaction scenario 𝐼 is used to execute the app, and
the postcondtion 𝑄 is checked for property violations (Line 8). We
check the property with 50% probability to balance the property
checking and the UI exploration, which allows us to reach deep
GUI states. For example, the bug in Figure 3(b) is found because we
explore more GUI states (e.g., pages (4)’, (5)’) even if the precondi-
tion is satisfied on page (3). If we always check the property when
the precondition is satisfied, the property will always be checked
once the app reaches page (3). It hinders the exploration to reach
the deep GUI state where the bug can be found.

3.3.2 Main Path Guided Exploration. Algorithm 2 presents the
main path guided exploration strategy. This strategy takes input
a property 𝜙 = ⟨𝑃, 𝐼,𝑄⟩ and a main path in the form of an event
sequence 𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛]. Our insight is that the main path can
be obtained by-product when a user specifies a property. This main
path provides the guidance of how to reach a GUI state where the
app property is ready for checking. In other words, when the main
path is executed from the app entry, we can obtain a sequence of
GUI states [𝑠0, 𝑠1, . . . , 𝑠𝑛], where 𝑠𝑛 |= 𝑃 . Moreover, exploring the
states close to the main path could give a higher chance of reaching
GUI states satisfying the precondition. In Figure 3(a), the main path
includes the two events driving the app from page (1) to page (3).

Given the property 𝜙 = ⟨𝑃, 𝐼,𝑄⟩ and the event sequence of the
main path 𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛], The guided exploration traverses
backward along the main path, and explores GUI states close to the
main path (Lines 3–12). Specifically, it iterates backward from 𝑒𝑛 to
𝑒1 (Line 8). For each event 𝑒𝑖 where 0 < 𝑖 ≤ 𝑛, it sends the prefix

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong Su

[𝑒1, 𝑒2, . . . , 𝑒𝑖] to the app to reach a GUI state 𝑠𝑖 of the main path
(Lines 5–6). Next, it explores GUI states close to 𝑠𝑖 , trying to find
states satisfying 𝑃 of the property (Line 7). Note that after 𝑠1, we
also explore GUI states close to 𝑠0 by sending no event from 𝐸 (Line
4). Multiple traverses along the main path can be conducted if the
time budget allows it, we clean the app data after exploring every
state on the main path (Lines 9–11).

The exploration starting from a GUI state of the main path resem-
bles the random exploration strategy 1 (Lines 14–20). Specifically,
it checks whether 𝑠 |= 𝑃 at each visited GUI state 𝑠 (Lines 15–16). If
so, it checks the property at 𝑠 by coin flipping (Line 16). Otherwise,
a random event is generated and sent to reach another state (Lines
19–20). Such a process iterates for MAX_STEP times (Line 14).

After the exploration, we try to get to the state that satisfies
the precondition (Lines 21–23). The insight is that the random
exploration starting from a GUI state of the main path may change
the internal state of the app, and getting to the state that satisfies
precondition may further exhibit different behaviors of the app [36].
To do so, we search for the latest event 𝑒 𝑗 in 𝐸 that can be sent at
the current GUI state (Lines 28–32). If 𝑒 𝑗 exists, we try to send the
suffix [𝑒 𝑗 , 𝑒 𝑗+1, . . . , 𝑒𝑛] of 𝐸 (Lines 34–37). Finally, we try to check
the property again (Lines 24–26).
Example. Figure 5 illustrates the guided exploration strategy. Let
𝑠0 be the starting GUI state of the app entry, the main path be
𝐸 = [𝑒1, 𝑒2, 𝑒3, 𝑒4] and the property be 𝜙 = ⟨𝑃, 𝐼,𝑄⟩. In 1st iteration,
this strategy would send all the events of 𝐸 and reaches 𝑠4 (by
definition 𝑠4 |= 𝑃). The states satisfying 𝑃 are marked in grey. It
then starts the random exploration from 𝑠4. Assume it generates
𝑒5 on 𝑠4 and reaches 𝑠5. Suppose 𝑠5 |= 𝑃 , the strategy may decide
to execute 𝐼 for checking 𝑄 on the ending state 𝑠6. Assume 𝑠6 |= 𝑄 ,
no property violation is found. At this time, suppose the number of
executed events of 𝑒5 and 𝐼 exceeds MAX_STEP, the strategy would
stop the random exploration and try to navigate to follow the
main path for satisfying 𝑃 . Suppose no event in 𝐸 can be sent on
𝑠6, the strategy would give up this navigation, and start the 2nd
iteration. In the 2nd and 3rd iterations, it would start from 𝑠3 and 𝑠2,
respectively, and do a similar process like the 1st iteration. In the
4th iteration, it starts from 𝑠1. Assume it explores 𝑠1

𝑒6−−→ 𝑠7
𝑒7−−→ 𝑠8

by generating two random events 𝑒6 and 𝑒7, but neither 7 or 𝑠8
satisfies 𝑃 . It then tries to navigate back to follow the main path
for satisfying 𝑃 . Suppose it finds that 𝑒3 can be sent on 𝑠8. It would
send 𝑒3 and 𝑒4 sequentially to try to follow the main path. Suppose

it reaches 𝑠4 satisfying 𝑃 , it would execute I and check 𝑄 on the
ending state 𝑠9. If the property is violated, we find a bug.

3.3.3 Validating Multiple Properties. The random and main path
guided exploration strategies by default validate one property of an
app at one run. When multiple properties of an app are available,
these two strategies can validate any subset of these properties
together. One benefit is that we can improve the efficiency of vali-
dating properties. Another benefit is that the interaction scenarios of
multiple properties provide a partial model of the app. This partial
model enables us more likely to reach deeper app states during test-
ing. For example, the property in Figure 2(b) can only be validated
when its precondition (i.e., a tag exists in the note’s content) is
satisfied. In this case, this precondition is more likely to be satisfied
if another property’s interaction scenario is adding a tag for a note.
Otherwise, it might be difficult for the exploration strategies alone
to achieve the effect of adding a tag for a note.

Specifically, to validate multiple properties together, the random
strategy (Algorithm 1) would check whether multiple properties’
preconditions are satisfied at Line 7, and randomly select one prop-
erty for checking at Line 8. The main path guided exploration
strategy (Algorithm 2) would randomly select one property as the
target, and perform guided exploration along its main path. When
every state on this main path has been explored, this strategy would
randomly select another property as a new target. In addition, this
strategy would randomly select a property for check when multiple
properties’ preconditions are satisfied at Lines 16-17 and 25-26.

4 IMPLEMENTATION

Kea is built on top of DroidBot [19], a popular open-source auto-
mated GUI testing tool. Specifically, we implemented the random
and main path guided exploration strategies in the input genera-
tor module of DroidBot. Uiautomator2 [42] is used to support
specifying app properties and parsing GUI layout information. Kea
currently supports the following UI and system events: click, long
click, set text, swipe, scroll, rotate screen, and naviagtion (e.g.,
back, home). We use the random text generator in Hypothesis [25]
to support generating random input texts. For the precondition
and postcondition, our property description language currently
supports checking the widget attributes (e.g., id, className, text)
which are parseable by Uiautomator2.

General and Practical Property-based Testing for Android Apps ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

5 EVALUATION

Kea is a property-based testing technique which requires manually
specified app properties for validation. To this end, we decided to
evaluate it based on a dataset of historical functional bugs of real-
world Android apps. This setup has two important benefits. First,
the historical bugs could indicate the affected app functionalities
and the expected app behaviors, from which we can identify the de-
sired app properties in an objective and unbiased manner2. Second,
the historical bugs enable us to quantitatively analyze the genera-
bility and practicality of Kea (e.g., how many properties could be
specified and howmany historical bugs could be found). To this end,
we evaluate Kea by investigating the following research questions:
• RQ1: How general is Kea in specifying the app properties vio-
lated by the historical functional bugs? How complex are these
specified properties?

• RQ2: How many of these historical functional bugs can be found
by Kea, given the specified properties?

• RQ3: Can Kea find new functional bugs on the latest versions of
these apps, given the specified properties?

• RQ4: How many historical or new functional bugs can be found
by prior functional testing techniques, compared to Kea?
RQ1 aims to evaluate the generability of Kea (i.e., whether Kea

can be applied to different functional bugs) and the complexity
of specifying the properties. RQ2 and RQ3 aim to evaluate the
practicality of Kea in finding known and new functional bugs.
RQ4 aims to compare Kea with prior relevant testing techniques
in finding functional bugs.

5.1 Evaluation Setup and Method

App subjects. We selected eight representative, open-source apps
from prior work in functional testing of Android apps [36, 37, 43,
45]. We excluded the other apps because (1) they have similar app
features with the selected ones, or (2) many of their old versions
cannot be run anymore (which prevents us from evaluating the
historical bugs). Table 1 gives the details of these eight apps, where
App Feature denotes the major app feature, and #Installations and
#Stars give the numbers of installations on Google Play and stars
on GitHub, respectively. Most of these apps are popular.
Collecting historical functional bugs.We crawled all the issues
reported in the issue repositories of the selected apps. Specifically,
we filtered the issues which were explicitly labeled as bugs and have
already been closed. We focused on the closed issues because such
issues have already been fixed by developers and are more likely re-
producible. In this process, we note that AnkiDroid and AntennaPod
respectively have more than 500 closed issues. Since it is not feasible
for us to examine all these issues, we constrained our efforts on all
the closed issues that were reported within the recent three years.
For these closed issues, we manually examined each of them and ex-
cluded the invalid ones like duplicated, mislabeled, feature requests,
crashing bugs, cosmetics bugs (e.g., the issues related to the colors),
and non-functional bugs (e.g., performance or energy issues). Then,
we manually tried to reproduce each of the remaining issues and
excluded the issues which were not reproducible anymore. Specif-
ically, we followed the reproduction steps and other information
2We tried to identify the app properties from the open-source apps’ public documenta-
tions, which however are too simple and incomplete to be useful.

Table 1: Apps used in our experiment (K=1,000, M=1,000,000)

App Name App Feature #Installations #Stars #Historical Bugs

OmniNotes Note Manager 10∼50M 2.7K 20
Markor Text Editor 10∼50M 3.3K 16

SimpleTask Task Manager 10∼50K 544 12
AmazeFileManager File Manager 1∼5M 5.1K 16

ActivityDiary Activity Recorder 1∼5K 72 6
AntennaPod Podcast Manager 1∼5M 5.8K 14
AnkiDroid Flashcards Manager 10∼50M 7.9K 28
Transistor Radio Listener 10∼50K 431 12

(e.g., buggy app versions, Android OS versions) to reproduce the
issue. Finally, we get 124 reproducible historical functional bugs
from these eight apps. In Table 1, #Historical bugs gives the numbers
of historical bugs of these apps.
Evaluation method of RQ1. RQ1 aims to investigate whether
all the app properties violated by the 124 historical bugs can be
specified by our PDL in Kea. Since these historical bugs are not
cherry-picked, if all the app properties can be specified, it could
demonstrate the generability of Kea.

To this end, given a historical bug, two co-authors of this paper
independently (1) reviewed the corresponding bug report to identify
the affected app functionality, (2) understand the expected app
behaviors to identify the desired app property, and (3) specify the
property in our PDL. Specifically, when specifying the property,
they follow one important guideline — the property should be as
general as possible to mimic the human knowledge on app features
without knowing the bug. In other words, we need to abstract away
the bug-specific information (e.g., specific events or text inputs)
from the known bug-triggering event trace but ensure that the
property should still be able to reveal the bug when the trace is
given. For example, one historical bug of OmniNotes (Issue #786)
is: when a user removes a tag from a note, some characters (e.g.,
“\n”, “,”, “-”) in the note content will be unexpectedly removed. From
this historical bug, we first identify the affected app functionality,
i.e., removing note tags in Figure 3(a). Then, we understood the
expected app behaviors to identify the desired property of this
functionality — when a user removes a tag in a note, the tag should
be removed and the note’s content should not be altered (Figure 2(b)
specifies this property). Note that we abstracted away the bug-
specific information (i.e.,“\n”, “,”, “-”) from the property.

To ensure all the properties are correct and general, the two
co-authors cross-checked their specified properties and updated
the properties if there were inconsistencies. Afterwards, they ex-
plained each historical bug and presented the corresponding prop-
erty to the other two co-authors for reaching consensus. Addi-
tionally, We conducted a sanity check on these properties to en-
sure their correctness. For each property, we followed the original
bug-triggering trace from the app entry to the app state satisfying
the property’s precondition and executed the interaction scenario
to confirm that the bug could be triggered. Finally, we got 124
carefully-validated properties, which are made publicly available
at https://github.com/ecnusse/Kea.

We compute the complexity of each property in the following
way: (1) for the preconditions and postconditions: the complexity
is represented by the sum of the number of clauses (defined in
Figure 4) and the number of logical operators (e.g., 𝑎𝑛𝑑 , 𝑜𝑟 , and 𝑛𝑜𝑡),
and (2) for the interaction scenario: the complexity is represented
by two metrics: the number of events and the number of code lines.

https://github.com/ecnusse/Kea

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong Su

For example, in Figure 2(b), the complexities of the precondition
and postcondition are 3 (two clauses and one logical operator at
Lines 2-3) and 4 (two clauses and one logical operator at Lines
30-31), respectively. The complexity of the interaction scenario is
represented by 3 events (Lines 10, 22, and 23), and 12 lines of code.
Evaluation method of RQ2. RQ2 aims to evaluate how many
historical bugs can be found by Kea. Specifically, to achieve a fair
evaluation, we examined all the 124 historical bugs, and excluded 27
bugs from this evaluation. Because the bug-triggering conditions of
these 27 bugs are too specific and are not the focus of this paper: (1)
domain-specific text inputs (20 bugs), e.g., adding a specific URL of
the radio station in Transistor’s Issue #9, (2) specific system settings
(5 bugs), e.g., setting Turkish as the system language in Markor’s
Issue #1443, (3) human knowledge (1 bug), e.g., giving a password
to lock the notes in OmniNotes’s Issue #598, and (4) specific timings
of events (1 bug), i.e., waiting until the timing reminder is triggered
in OmniNotes’s Issue #381. These specific bug-triggering conditions
were also identified as the common challenges of input generation in
testing apps [4]. It is an orthogonal problem and could be mitigated
by those LLM-based techniques [21, 22].

Thus, we focus on finding the remaining 97 historical bugs un-
der the random and guided exploration strategies. We allocated 6
hours for finding each bug per strategy. To mitigate the random-
ness, we repeated the experiment three times for each bug and
counted the average time if the bug was found. For the random ex-
ploration strategy, we evaluated it with five different configurations
of MAX_EVENT_NUMBER (the maximum number of events allowed in
each test, i.e., 20, 40, 60, 80, 100) in Algorithm 1. For the guided explo-
ration strategy, the maximum number of random events (MAX_STEP
in Algorithm 2, Line 14) is set as 20, and the main path is set as the
shortest event trace starting from the app entry and reaching the
app state satisfying the precondition of the corresponding property.
We examined all the bugs reported by Kea to confirm whether a
historical bug was found.
Evaluation method of RQ3. RQ3 aims to evaluate whether Kea
can find new functional bugs on the latest app versions given the
specified properties. To this end, we manually examined whether
the functionality w.r.t. each property from RQ1 still exists on the
latest app versions at the time of our study. If so, we checked and
updated the property to fit the latest app version if needed. In this
process, we excluded 8 properties which are not supported anymore.
Thus, RQ3 was evaluated on the 116 properties. Specifically, we
allocated 24 hours for validating each property under the random
and guided strategies, respectively. It took 24×116 machine hours
per strategy. Additionally, we also validated all properties of one app
together under the random and guided strategies, respectively (cf.
validating multiple properties in Section 3.3.3). We did not validate
all the properties of one app together in RQ2 because the historical
bugs occur on different app versions. We allocated the same testing
time (24×116 machine hours) per strategy to ensure fairness. We
inspected all the bugs found by Kea and reported unique ones to
app developers for confirmation.
Evaluation method of RQ4. RQ4 aims to compare Keawith prior
functional testing techniques. To this end, we compared with Ge-
nie [36] and Odin [43] which propose automated oracles to find
functional bugs, and PBFDroid [37] which is a property-based test-
ing technique for finding data manipulation errors. We evaluated

OmniNotes Markor Simpletask Amaze ActivitydiaryAntennapod AnkiDroid Transistor

5
10
15

Precondition

OmniNotes Markor Simpletask Amaze ActivitydiaryAntennapod AnkiDroid Transistor
0

5

Events (in interaction scenario)

OmniNotes Markor Simpletask Amaze ActivitydiaryAntennapod AnkiDroid Transistor
0

25

Code lines (of interaction scenario)

OmniNotes Markor Simpletask Amaze ActivitydiaryAntennapod AnkiDroid Transistor
1
2
3

Postcondition

Figure 6: Complexity of the properties in different apps

these three prior tools on the 97 historical bugs from RQ2 and the
new bugs from RQ3. Specifically, we conducted a two-step analysis
to evaluate these tools’ ability in finding bugs. First, we carefully
read the corresponding papers and ran these tools to understand
their techniques. To avoid misunderstanding, we contacted and
discussed with the authors of Genie, Odin, and PBFDroid, to val-
idate our understanding of their techniques. Then, we manually
analyzed which bugs in RQ2 and RQ3 are within these tools’ ca-
pability scopes. Second, we ran each tool on the bugs within their
scopes to validate whether they could find the bugs in practice.
We followed the default setup of Genie and Odin in their papers.
For PBFDroid, it requires users to specify the properties of data
manipulation functionalities (DMFs). Thus, we manually specified
the properties of needed DMFs for finding the corresponding bug.
We also conducted a sanity check to ensure the specified properties
can indeed capture the corresponding bug like what we did in RQ1
Then, we allocated the same time in RQ2 (6 hours) and RQ3 (24
hours) for Genie, Odin, and PBFDroid to find each bug.

All the experiments in RQ2, RQ3, and RQ4 were conducted on
a 64-bit Ubuntu 22.04 machine (128 cores, AMD EPYC 7742 CPU,
256G RAM) and Android emulators (Android 10, Pixel). Note that
all the 124 historical bugs are reproducible on Android 10.

5.2 Results of RQ1

Generability of Kea. We find that all the properties violated
by the 124 historical bugs can be specified in our PDL in Kea,
demonstrating the generability. Moreover, all the historical bugs
can be revealed when following the original bug-triggering event
traces from the app entry to the app state satisfying the property’s
precondition and executing the interaction scenario. Thus, all the
properties are correctly specified.
Complexities of the properties. Figure 6 presents the complexity
of the 124 properties across eight apps. The horizontal axis gives the
app names, and the vertical axis gives the value of the correspond-
ing complexity. Specifically, the average values of complexities for
the precondition and postcondition are 4.9 and 1.6, respectively.
The average values of the number of events and code lines for in-
teraction scenario are 3.1, and 9.9, respectively. The precondition
is more complicated than the postcondition because more clauses
are typically needed in the precondition to ensure precise checking
of the property. In contrast, the postcondition usually needs only

General and Practical Property-based Testing for Android Apps ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: #Historical bugs found by different strategies.

Random_100 Random_80 Random_60 Random_40 Random_20

Guided

exploration

66 (68.0%) 63 (64.9%) 59 (60.8%) 63 (64.9%) 54 (55.7%) 92 (94.8%)

Table 3: Bug finding time of the 65 historical bugs found by

both Random_100 and the guided exploration strategies.

Bug Finding Time (s) Average Min Q1 Median Q3 Max

Random_100 3,171 19 210 931 4,943 20,939
Guided exploration 684 22 42 88 187 7,956

Table 4: Number of new bugs found by the four modes.

Mode #Found Bugs

Random_Single_Property 17
Guided_Single_Property 23
Random_All_Properties 22
Guided_All_Properties 22

one or two clauses to check the property. The results show that the
properties can be specified with an acceptable complexity.

5.3 Results of RQ2

Table 2 shows the average numbers of historical bugs found by
the random and guided exploration strategies. Specifically, Ran-
dom_100, Random_80, Random_60, Random_40 and Random_20
denote the five different configurations of maximum numbers of
allowed events (i.e., 100, 80, 60, 40, 20 events) in one GUI test for
the random exploration strategy, respectively. We can see that Ran-
dom_100, Random_80, Random_60, Random_40 and Random_20
found 66, 63, 59, 63, and 54 bugs, respectively, while the guided
exploration strategy found 92 bugs. These results show that (1)
Random_100 found the most number of bugs among the five con-
figurations of the random exploration strategy; (2) the guided explo-
ration strategy is more effective in finding historical bugs than the
random one. Specifically, all but one bugs found by Random_100
were found by the guided exploration strategy.

Among the 97 historical bugs, four bugs cannot be found by
any strategy. We find that triggering these bugs requires long and
specific event traces which are difficult to generate by the random
or the guided strategy alone. For example, in OmniNotes’s issue
#812, a note will lose the attached photos after it is backed up
and restored. The property is specified as follows: the precondition
checks the existence of a note, the interaction scenario is backing up
and restoring the note, and the postcondition checks whether the
note is correctly restored. However, to reveal this bug, we need to
automatically generate a long event trace which opens the camera,
takes a photo, creates a note, and attaches the photo to this note.

Table 3 shows the time cost (in seconds) of 65 bugs that were
found by both the Random_100 and the guided exploration strate-
gies. The guided strategy is nearly 4X faster than Random_100
(684 vs. 3,171 seconds) in terms of the average time of finding bugs.
Among these 65 bugs, 17 bugs cannot be triggered by executing
the main path but require guided exploration along the main path.
For these 17 bugs, the guided strategy only took 40% time cost of
Random_100 in terms of the average time of finding bugs (2,358 vs.
5,858 seconds). Specifically, on 14 out of these 17 bugs, the guided
strategy was faster than Random_100. Among the 27 bugs only
found by the guided strategy, 13 bugs cannot be found by executing
the main path but require guided exploration along the main path.

5.4 Results of RQ3

We found 25 new functional bugs in total on the latest app versions.
All these bugs have been confirmed, and 21 have already been fixed.
Table 5 lists these 25 functional bugs (the affected app name, bug ID,
bug status, whether the bug occurs on the main path or alternative
path, and bug description). Here, “Main path” denotes that the bug
is found by executing the main path during property checking (i.e.,
the bug is a regression), while “Alternative path” denotes that the
bug requires additional exploration and occurs on an alternative
path rather than the main path during property checking.

We applied four modes to validate properties under the random
and the guided strategies: (1) validating one property at one run (de-
noted byRandom_Single_Property andGuided_Single_Property,
respectively), and (2) validating all properties of an app together (de-
noted by Random_All_Properties and Guided_All_Properties,
respectively). Note that the random strategy is configured as Ran-
dom_100 which performs best in RQ2. Table 4 shows that these
four modes found 17, 23, 22, and 22 bugs, respectively.

We examined the bugs found by different modes and obtained
some interesting observations. First, all the bugs found by Ran-
dom_Single_Property were found by the other three modes. Sec-
ond, Guided_Single_Property found more bugs than the other
three modes. Indeed, it found two bugs that were not found by Ran-
dom_All_Properties andGuided_All_Properties. Themain rea-
son is that the main path provides guidance for reaching a property,
and the guided exploration can generate many alternative paths for
extensive testing. For example, manifesting the bug (with bug ID 9)
requires performing guided exploration along the main path to gen-
erate some new events (archiving a note, clicking the search button,
clicking back). This bug was found by Guided_Single_Property
alone. Although Guided_All_Properties also has exploration
guidance, it missed this bug. Because validating multiple properties
together may decrease the chance of validating one single property,
thus missing some bugs.

Third, validating multiple properties together has its own ben-
efits. For example, Random_All_Properties found 5 more bugs
than Random_Single_Property; both Random_All_Properties
and Guided_All_Properties found two bugs which were not
found by Guided_Single_Property. The main reason is that the
interaction scenarios of multiple properties provide a partial model
of the app. This partial model can help reach deeper app states,
thus increasing the chance of finding bugs. Validating multiple
properties together also improves the testing efficiency. For ex-
ample, Random_All_Properties and Guided_All_Properties
found 6 bugs in Markor within 24 machine hours, while Ran-
dom_Single_Property and Guided_Single_Property only found
5 bugs by taking 12*24 machine hours (24 hours for each of the 12
properties in Markor), respectively.

5.5 Results of RQ4

Table 6 investigates how many of the 97 historical bugs and the
25 new bugs found by Kea can be found by Genie, Odin and
PBFDroid. “#Historical Bugs in Scope” and “#New Bugs in Scope”
give the numbers of bugs within the capability scopes of these tools.
“#Found Historical Bugs” and “#Found New Bugs” give the numbers
of bugs found by these tools in practice. Among the 97 historical

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong Su

Table 5: Statistics of the 25 new functional bugs found by Kea.

App Name ID Bug Status Bug Occurs On Bug Description

OmniNotes 1 Fixed Alternative path The note tag cannot be removed.
2 Fixed Alternative path The uncategorized item in the navigation still appears when it does not contain notes.
3 Fixed Alternative path Deleting one tag in the note changes another tag.
4 Fixed Alternative path The note content is changed when clicking to share.
5 Confirmed Alternative path There exists duplicated note categories.
6 Fixed Alternative path Wrong search result when searching for the note with tags.
7 Fixed Alternative path The uncategorized item in the navigation does not appear when it should.
8 Fixed Alternative path The locked note’s content can be searched.
9 Fixed Alternative path The archived note erroneously appears in the note list when clicking the search bar.
10 Fixed Alternative path The search filter does not apply to the note list.

AmazeFileManager 11 Fixed Main path Recent files directory fails to display recent files.
12 Fixed Main path The search result’s title disappears after screen rotation.
13 Fixed Alternative path Floating action button does not display when it should.

Markor 14 Fixed Main path Recently viewed documents does not update after users view some documents.
15 Fixed Main path The file modification time does not change after modifying the file.
16 Fixed Main path Clicking file format incorrectly jumps to the “Seach documents” dialog.
17 Fixed Alternative path File content is overridden when creating a new file with the same name.
18 Fixed Alternative path When creating a new file, the file type is not consistent with the suffix.
19 Fixed Alternative path Delayed appearance of newly created folder.

SimpleTask 20 Confirmed Alternative path When creating a new task, an existing task is opened rather than a new task.
Transistor 21 Fixed Alternative path Playback indicator is not consistent.

22 Fixed Alternative path After deleting one station, the playback metadata text still exists in another station.
23 Fixed Alternative path The newly added station erroneously displayed as being long-clicked.

AnkiDroid 24 Confirmed Main path Card Browser does not remember the scroll position after editing a card.
25 Confirmed Main path After repositioning a card, “Undo Reschedule” is shown instead of “Undo Reposition”.

Table 6: Results of prior functional testing tools for finding

the historical and new functional bugs.

Tool

#Historical Bugs

in Scope

#Found

Historical Bugs

#New Bugs

in Scope

#Found

New Bugs

Genie 13 4 1 0
ODIN 4 0 0 0
PBFDroid 23 9 7 1
#Total 34 13 7 1

bugs, only 35% (≈34/97) bugs are within the capability scopes of
these three tools, and only 13 out of 34 bugs were found. For the 25
new bugs, only 28% (7/25) bugs are within the capability scopes of
these three tools, and only 1 bug was found. It indicates that prior
tools are limited in finding functional bugs. We further analyzed
why these tools are limited in finding these functional bugs and
found two major reasons. First, these tools only target specific
types of functional bugs. Genie and Odin can only find bugs that
violate their automated oracles, and PBFDroid can only find data
manipulation errors. Second, the generated inputs are low-quality,
and are difficult to reach the target functionality. Genie, Odin, and
PBFDroid do not provide guidance during exploration like Kea.
They generate many redundant tests.

6 DISCUSSION

6.1 Generability and Practicability

The results of RQ1 show that Kea is general as our PDL can specify
the properties violated by many different functional bugs. Specif-
ically, our PDL can specify the properties of the functional bugs
targeted by PBFDroid (which we compared in RQ4). PBFDroid
tests the datamanipulation functionalities which perform the CRUD
operations, i.e., create, read, update and delete. The properties of
these functionalities can be easily specified by our PDL (like the
example property in Figure 2(b)). Moreover, we can use our PDL to
record the app data at finer granularity to check more sophisticated
properties (e.g., how many data entries have been added or deleted),
which however are not supported by PBFDroid.

Moreover, the testing strategies of other prior functional test-
ing tools like Thor [1], ChimpCheck [17] and SetDroid [38] can
also be supported by extending Kea. For example, Thor [1] and
ChimpCheck [17] randomly inject neutral events (e.g., rotating
the device screen from portrait to landscape and rotating back)
into human tests to check whether the assertions in the tests still
hold. Kea can easily support this testing strategy by adding a new
exploration strategy in the input generator module (i.e., adding
the neutral events during the random exploration and/or injecting
neutral events at any random position of the interaction scenario)
for validating properties. SetDroid [38] randomly changes system
settings and restores them to find system setting related functional
bugs. To support this strategy, we can add the events of changing
and restoring system settings in the exploration strategies.

Kea does not aim to replace prior fully automated tools like
Genie [36] and Odin [43]. The automated oracles of Genie and
Odin could still complementKea in finding bugs. Like any property-
based testing technique, Kea requires manually specifying app
properties. Our experience shows that it took about 3∼5 minutes
to specify a property in our PDL.

6.2 Threats to Validity

Our work may suffer from some threats to validity. First, the apps
used in our experiment may not represent all the real-world apps.
But we believe our property-based testing technique is general for
different types of apps as our property description language is gen-
eral. Also, selecting the apps from prior relevant work allows amore
fair and direct comparison with prior testing tools. In the future,
we would apply Kea to more apps. Second, the app properties used
in our experiment are manually specified based on 124 historical
bugs. The quality and diversity of these properties may affect the
bug finding results of RQ2 and RQ3. To this end, we tried our best
to ensure these properties are unbiased, correct, and general. We
selected the historical bugs without any cherry picking to reduce

General and Practical Property-based Testing for Android Apps ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

potential biases. Moreover, the specified properties are rigorously
cross-checked between two co-authors and later double-checked
by the other two co-authors.

7 RELATEDWORK

Finding functional bugs in Android apps faces the oracle prob-
lem [3]. Most of prior work [1, 13, 30, 36, 38, 39, 43, 45, 46] designs
automated oracles to overcome the preceding problem. In these
work, Genie [36] and Odin [43] are the representative ones be-
cause they are not limited to specific types of functional bugs. How-
ever, as we have already discussed in Section 1, they are limited
in generability (covering limited portions of functional bugs) and
practicality (leading to high false positives). Other work in this
direction is limited to specific types of functional bugs like data
losses [1, 13, 30, 46] and system setting related defects [38, 39]. As
we have discussed in Section 6.1, Kea could also support finding
such types of functional bugs.

Property-based testing [9, 11] is a powerful testing approach and
has been applied to find functional bugs in many different software
systems [2, 14, 15, 27, 31, 40]. To our knowledge, ChimpCheck [17]
and PBFDroid [37] are the only work applying property-based test-
ing for Android apps. However, ChimpCheck’s main contribution
is designing novel UI trace generators, which can fuse example-
based tests with random testing. It directly reuses the assertions in
the example-based tests as the oracles. However, such assertions
are much less general and expressive than our property descrip-
tion language, and applying ChimpCheck still requires manually
creating complete GUI tests. As a side note, ChimpCheck has not
been demonstrated for finding functional bugs in its paper. On the
other hand, PBFDroid is limited to specifying the properties for
data manipulation functionalities. The experimental comparison
in Section 5.5 and the detailed discussion in Section 6.1 have al-
ready shown that Kea is more general and practical than PBFDroid.
Moreover, PBFDroid only uses random testing for generating in-
puts, while Kea designs a guided exploration strategy which is
more effective in finding bugs. Some prior work uses code cov-
erage [18, 28] or energy consumption [23] as the guidance for
improving property-based testing.

8 CONCLUSION

This paper introduces a general and practical testing technique
based on property-based testing for finding functional bugs in An-
droid apps. We design a property description language and two
exploration strategies. The evaluation results show that this tech-
nique is general and practical for functional testing. It found 92
(94.8%) of 124 historical functional bugs, and 25 new functional
bugs on the latest version of the apps. All of 25 new bugs have been
confirmed and 21 of them have been fixed by the developers.

ACKNOWLEDGMENTS

We thank the anonymous ASE reviewers for their valuable feedback.
This work was supported in part by NSFC Project (No.62072178),
Shanghai Trusted Industry Internet Software Collaborative Innova-
tion Center, “Digital Silk Road” Shanghai International Joint Lab of
Trustworthy Intelligent Software under Grant 22510750100, China
Scholarship Council, and Grant ZYGX2024K008 of National Key

Laboratory on Blind Signal Processing. Ting Su, Jue Wang and
Geguang Pu are the corresponding authors of this paper.

REFERENCES

[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-
atic execution of android test suites in adverse conditions. In Proceedings of the
2015 International Symposium on Software Testing and Analysis. 83–93.

[2] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Testing AU-
TOSAR software with QuickCheck. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 1–4.

[3] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507–525.

[4] Farnaz Behrang and Alessandro Orso. 2020. Seven reasons why: an in-depth study
of the limitations of random test input generation for Android. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
1066–1077.

[5] David Bolton. 2024. 88% Of People Will Abandon An App Because Of Bugs.
Retrieved 2024-5 from https://www.applause.com/blog/app-abandonment-bug-
testing/

[6] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:
a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2020).

[7] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,
and Zhi Quan Zhou. 2018. Metamorphic testing: A review of challenges and
opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1–27.

[8] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated test input generation for android: Are we there yet?(e). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 429–440.

[9] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming. 268–279.

[10] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57–72.

[11] George Fink and Matt Bishop. 1997. Property-based testing: a new approach
to testing for assurance. ACM SIGSOFT Software Engineering Notes 22, 4 (1997),
74–80.

[12] Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C Pierce, and
Andrew Head. 2024. Property-Based Testing in Practice. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[13] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. 2022.
Detecting and fixing data loss issues in Android apps. In ISSTA ’22: 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis. 605–616.
https://doi.org/10.1145/3533767.3534402

[14] John Hughes, Benjamin C Pierce, Thomas Arts, and Ulf Norell. 2016. Mysteries
of dropbox: property-based testing of a distributed synchronization service. In
2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 135–145.

[15] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark. 2020. QuickREST:
Property-based test generation of OpenAPI-described RESTful APIs. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST). IEEE, 131–141.

[16] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-
mermann, and David Lo. 2015. Understanding the test automation culture of
app developers. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 1–10.

[17] Edmund SL Lam, Peilun Zhang, and Bor-Yuh Evan Chang. 2017. ChimpCheck:
property-based randomized test generation for interactive apps. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. 58–77.

[18] Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce. 2019. Cover-
age guided, property based testing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–29.

[19] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26.

https://www.applause.com/blog/app-abandonment-bug-testing/
https://www.applause.com/blog/app-abandonment-bug-testing/
https://doi.org/10.1145/3533767.3534402

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong Su

[20] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
613–622.

[21] Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2023. Fill in the blank: Context-aware automated text input genera-
tion for mobile gui testing. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 1355–1367.

[22] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Zhilin Tian,
Yuekai Huang, Jun Hu, and Qing Wang. 2024. Testing the limits: Unusual text
inputs generation for mobile app crash detection with large language model. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–12.

[23] Andreas Löscher and Konstantinos Sagonas. 2017. Targeted property-based
testing. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 46–56.

[24] Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang. 2022.
Fastbot2: Reusable automated model-based gui testing for android enhanced
by reinforcement learning. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–5.

[25] David R MacIver, Zac Hatfield-Dodds, et al. 2019. Hypothesis: A new approach
to property-based testing. Journal of Open Source Software 4, 43 (2019), 1891.

[26] Motherboard. 2020. Here’s the Shadow Inc. App That Failed in Iowa Last Night.
Retrieved 2024-5 from https://www.vice.com/en_us/article/y3m33x/heres-the-
shadow-inc-app-that-failed-in-iowa-last-night

[27] Liam O’Connor and Oskar Wickström. 2022. Quickstrom: property-based accep-
tance testing with LTL specifications. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
1025–1038.

[28] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. Jqf: Coverage-guided
property-based testing in java. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. 398–401.

[29] Reuters. 2021. Japan’s COVID-19 app failed to pass on some contact warnings.
Retrieved 2024-5 from https://www.reuters.com/article/us-health-coronavirus-
japan-app-idUSKBN2A31BA

[30] Oliviero Riganelli, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci, and
LeonardoMariani. 2020. Data loss detector: automatically revealing data loss bugs
in Android apps. In ISSTA ’20: 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 141–152. https://doi.org/10.1145/3395363.3397379

[31] André Santos, Alcino Cunha, and Nuno Macedo. 2018. Property-based testing for
the robot operating system. In Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation. 56–62.

[32] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805–824.

[33] Sixth Tone. 2019. E-Commerce App Loses ‘Tens of Millions’ From Coupon Glitches.
Retrieved 2024-5 from https://www.sixthtone.com/news/1003483

[34] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In The joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). 245–256. https://doi.org/10.1145/3106237.3106298

[35] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated gui testing
for android against real-world bugs. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 119–130.

[36] Ting Su, Yichen Yan, Jue Wang, Jingling Sun, Yiheng Xiong, Geguang Pu, Ke
Wang, and Zhendong Su. 2021. Fully automated functional fuzzing of Android
apps for detecting non-crashing logic bugs. Proc. ACM Program. Lang. 5, OOPSLA
(2021), 1–31. https://doi.org/10.1145/3485533

[37] Jingling Sun, Ting Su, Jiayi Jiang, Jue Wang, Geguang Pu, and Zhendong Su. 2023.
Property-Based Fuzzing for Finding Data Manipulation Errors in Android Apps.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). 1088–1100.
https://doi.org/10.1145/3611643.3616286

[38] Jingling Sun, Ting Su, Junxin Li, Zhen Dong, Geguang Pu, Tao Xie, and Zhendong
Su. 2021. Understanding and finding system setting-related defects in Android
apps. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 204–215. https://doi.org/10.1145/3460319.3464806

[39] Jingling Sun, Ting Su, Kai Liu, Chao Peng, Zhao Zhang, Geguang Pu, Tao Xie,
and Zhendong Su. 2023. Characterizing and Finding System Setting-Related
Defects in Android Apps. IEEE Trans. Software Eng. 49, 4 (2023), 2941–2963.
https://doi.org/10.1109/TSE.2023.3236449

[40] Jingling Sun, Ting Su, Jun Sun, Jianwen Li, Mengfei Wang, and Geguang Pu.
2024. Property-Based Testing for Validating User Privacy-Related Functionalities
in Social Media Apps. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering. 440–451.

[41] Ash Turner. 2024. How Many Android Users Are There? Global and US Statistics
(2024) (Source: https://www.bankmycell.com/blog/how-many-android-users-are-
there). Retrieved 2024-5 from https://www.bankmycell.com/blog/how-many-
android-users-are-there

[42] uiautomator2 Team. 2021. uiautomator2. Retrieved 2024-5 from https://github.
com/openatx/uiautomator2

[43] Jue Wang, Yanyan Jiang, Ting Su, Shaohua Li, Chang Xu, Jian Lu, and Zhendong
Su. 2022. Detecting non-crashing functional bugs in Android apps via deep-
state differential analysis. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 434–446. https://doi.org/10.1145/3540250.3549170

[44] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of android test generation tools in
industrial cases. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 738–748.

[45] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang
Pu, Jifeng He, and Zhendong Su. 2023. An empirical study of functional bugs in
android apps. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA’23). 1319–1331.

[46] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. 2014. Automated
Generation of Oracles for Testing User-Interaction Features of Mobile Apps. In
Proceedings of the International Conference on Software Testing, Verification and
Validation (ICST). 183–192. https://doi.org/10.1109/ICST.2014.31

https://www.vice.com/en_us/article/y3m33x/heres-the-shadow-inc-app-that-failed-in-iowa-last-night
https://www.vice.com/en_us/article/y3m33x/heres-the-shadow-inc-app-that-failed-in-iowa-last-night
https://www.reuters.com/article/us-health-coronavirus-japan-app-idUSKBN2A31BA
https://www.reuters.com/article/us-health-coronavirus-japan-app-idUSKBN2A31BA
https://doi.org/10.1145/3395363.3397379
https://www.sixthtone.com/news/1003483
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3485533
https://doi.org/10.1145/3611643.3616286
https://doi.org/10.1145/3460319.3464806
https://doi.org/10.1109/TSE.2023.3236449
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://github.com/openatx/uiautomator2
https://github.com/openatx/uiautomator2
https://doi.org/10.1145/3540250.3549170
https://doi.org/10.1109/ICST.2014.31

	Abstract
	1 introduction
	2 Overview and Example
	3 Design of Kea
	3.1 Preliminary
	3.2 Specifying Properties
	3.3 Validating Properties

	4 Implementation
	5 evaluation
	5.1 Evaluation Setup and Method
	5.2 Results of RQ1
	5.3 Results of RQ2
	5.4 Results of RQ3
	5.5 Results of RQ4

	6 Discussion
	6.1 Generability and Practicability
	6.2 Threats to Validity

	7 Related Work
	8 conclusion
	References

